
PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

8

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

The Relationship of Compilation Behavior Metrics and Student

Performance in Introductory Programming Course

Christine Lourrine S. Tablatin1, Ma. Mercedes T. Rodrigo2

Pangasinan State University1

Ateneo de Manila University2

ctablatin@psu.edu.ph1, mrodrigo@ateneo.edu2

Abstract – How students cope with syntax errors is a possible indicator of students’ programming skills or levels of

understanding. Researchers have therefore taken an interest in studying student online protocols, hence the

development of online protocol analysis metrics such as Error Quotient (EQ), Watwin Algorithm, and Repeated Error

Density (RED). These metrics aim to quantify how well students cope with syntax errors which could be used to predict

students’ performance. Previous studies were conducted comparing the predictive power of these metrics, however, the

limited number and inconsistencies of the results require further exploration to come up with consistent and reliable

results. We compare three data-driven metrics to determine which among them predicts students’ midterm exam scores.

The findings showed that RED could significantly predict students’ midterm scores and accounted for 12.2% of the

explained variability in midterm exam scores. The result of the comparison of the three metrics showed that EQ is the

better predictor among them since it accounted for 20.2% of the explained variability in midterm exam scores.

Keywords – Compilation behaviors, data-driven metrics, Error Quotient, Watwin, Repeated Error Density.

INTRODUCTION

Programming is a difficult skill for students to

learn. A literature review conducted by Watson and Li

[14] reports that about 32% of the students worldwide

fail their CS1 or introductory programming course.

Computer science educators and researchers over the

past years attempted to determine and understand where

student difficulties lie. They found that students have

difficulty understanding programming concepts [1, 9],

tracing, reading, and understanding pieces of code [5,

10].

How students cope with syntax errors is a possible

indicator of students’ skills or levels of understanding.

Researchers have therefore taken an interest in studying

student online protocols, defined as the set of all

program submissions to the compiler. The online

protocols are typically gathered through an

instrumented interactive development environment.

Each time a student compiles a program, the program

source code as well as the event type (success or fail),

timestamp, error message reported, line number, and

other information is saved to a database that can later be

analyzed [13, 11].

Three examples of online protocol analysis metrics

are the Error Quotient (EQ)[7], Watwin Algorithm [16],

and Repeated Error Density [3].

Jadud explores students’ compilation behavior by

dynamically capturing “snapshots” of their programs

using the BlueJ IDE which were taken every time they

compile their Java program. Analyzing these snapshots

provided information about how students write their

programs. EQ is a metric that quantifies how students

fix their syntax errors [2].

A compilation event is represented as one record

which consists of the event type, error message, the

location of the error in the file, and the source code

[13]. Some studies include more compilation event

parameters which are needed in their analysis. To

calculate the EQ [7], we create compilation pairings by

taking consecutive pairs from the set of compilation

events of each student. We then score each pair of

compilation events according to the algorithm presented

in Figure 1. The scores are normalized by dividing the

sum of the total scores assigned to each pair of

compilation events by 9 which is the maximum score

possible for each pair. Finally, compute the sum of the

scores and then divide it by the number of pairs. The

average which ranges from 0 to 1 is taken as the EQ

score for the programming session.

Since the introduction of EQ as a measure of

compilation behavior of novice programmers in 2006,

researchers have become more interested in the

collection of log data on students’ programming

processes while they are working on their laboratory

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

9

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

exercises or course assignments. To test the predictive

power of EQ, Jadud [8] conducted a study correlating

students’ EQ and their performance on traditional

assignments and final exams using code snapshots of

the students’ program. The findings of the study

revealed that the quality of the relationship between EQ

and performance in assignments is poor because only

11% of the variance in the performance can be

explained by EQ, though the fit is significant. The

relationship between EQ and the final exam is more

significant but still considered to be poor since EQ can

only account for 25% of the variance of students’ final

exam scores.

Figure 1. EQ Algorithm Flowchart

A similar study was conducted by Rodrigo, et al.

[12] which correlated the mean EQ score with the

students’ midterm score. This was considered as one of

the first successful use of EQ as a predictor of student

performance since they arrived at a moderate but

significant correlation value R= -0.54 (p<0.001).

Further exploration was conducted in the study of

Tabanao, et al. [13] to find out which among the errors

encountered, the average time between compilation and

EQ are predictive of students’ midterm scores. It was

found that compared to the linear regression models

using errors encountered and time between

compilations, the model with EQ as a factor is

considered to be a highly significant predictor of the

midterm score. The model could account for a moderate

amount of the variance in performance which is 29.7%

compared to 13.87% for the errors encountered and

6.51% for the average time between compilations.

These studies provided evidence of the predictive power

of EQ using students’ programming behavior.

The findings on the studies regarding EQ proved

that it is a weak predictor of students’ performance.

Watson, et al. [16], saw methodological weaknesses in

the approach used by the EQ algorithm. It was noted

that EQ assumes that students work on a single source

file while in reality, students can work on multiple files

at the same time. In between compilations of different

files would result in inaccurate compilation pairings

since the construction of pairings in EQ used the natural

order of the compilation events during a programming

session. Further, EQ did not consider the amount of

time spent by a student in resolving their errors. The

attempt to address the limitations of EQ led to the

development of the Watwin algorithm. The limitation

on the construction of compilation pairings was

addressed by constructing the pairings on a per-file

basis, ordered by timestamps. In addition, the algorithm

incorporates a scoring approach that considers the

amount of time spent by students to resolve a specific

type of error compared to the resolve time of their

peers.

Similar to EQ, Watwin also requires the

construction of consecutive pairings for each file a

student is working on and estimates the amount of time

a student has spent in resolving an error. A more

detailed approach in preparing the set of compilation

pairings can be found in [16]. The scoring algorithm

assigned penalty based on their resolve times which can

be one standard deviation above the mean or below the

mean. A higher penalty is assigned to longer resolve

time which indicates that students have fixed an error

much slower than their peers, while a lower penalty is

assigned to those who resolve their errors quickly. The

components included and the assigned penalties were

based on the result of previous studies that used

regression models and cross-validation and were not a

product of random guesswork. This makes the

algorithm applicable to independent datasets.

To evaluate the predictive power of the developed

algorithm, the Watwin score was correlated to the

overall coursework mark. The findings revealed that the

Watwin score could significantly predict performance,

which could explain 30% of the variance in overall

coursework marks. The same dataset used in the

analysis of the predictive power of Watwin was applied

to EQ to compare their predictive power. The result was

consistent with other studies that EQ is a weak predictor

of performance having explanatory power between

15%-20% of the variance in performance. Further

comparison of EQ and Watwin was conducted in [15]

which is consistent with the findings of [16] wherein

both are predictive of students’ performance and that

Watwin is a stronger predictor than EQ. However,

recent exploration of the metrics in the study of Carter,

et al. [4] presented a surprising result that was

drastically different from the results of previous studies

comparing EQ and Watwin. The result found out that

EQ can only explain 3% of the variance in students’

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

10

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

final grade compared to 18% on the study of [15] while

Watwin could only account for 12% compared to 36%.

The results of these studies provided evidence that

Watwin is a stronger predictor compared to EQ.

A third algorithm for online protocol analysis

quantifies repeated errors by looking at the number of

error strings a student encounters as well as the length

of these strings. This metric is less context-dependent

and is suitable for short programming sessions. RED

has properties that could answer the following questions

of Jadud [7]: (1) “If one student fails to correct an

‘illegal start of expression error throughout three

compilations, and another over 10, is one student

[about] three times worse than the other?”, and (2)

“What if the other student deals with a non-stop string

of errors, and the repetition of this particular error is just

one of many?”. RED could answer the first question by

providing a means to quantify how much a student

struggles with a particular error by looking at the length

of repeated error strings of that particular error

compared to their peers. The second question could also

be answered by the metric since it assigns a higher

penalty to one longer repeated error strings compared to

two shorter repeated error strings.

The algorithm to compute the RED score is

simple. The metric involves summing up a sub-metric

calculated on each repeated error string encountered in

a compilation event sequence. This sub metric is ri
2/|si|

where |si| is the length of string si containing ri repeated

errors. This can be expressed completely in terms of ri

as ri
2/(ri + 1), since the length of a string si, containing

consecutive errors is always equal to ri + 1. The value of

RED for a given sequence S of n repeated error strings

is the sum of ri
2/(ri + 1) for each string si in S, given by

the equation:

where ri is the number of repeated errors in string

si.

We have to take note that a repeated error r is

defined as a pair of events where each event results in

the same error, which means committing the same error

consecutively.

RED has been compared to EQ to check how the

metric behaves on real data which was collected from

the compiler data recorded for four weeks while

students used a customized Java editor. The data

consists of 29,019 error events from two groups of

novice programmers with approximately 100 students

each. The results showed that RED is more suitable for

shorter sessions, while EQ is more suitable for longer

sessions. It was also pointed out, that RED could be a

valid metric when compiler error messages are

enhanced. However, no studies have been conducted yet

to determine if RED correlates with student

performance which provides an opportunity for further

research.

These metrics share a single purpose: to quantify

how well students cope with syntax errors. Their

precise methods differ (to be discussed in the methods

section). There are limited studies, though, comparing

the performance of each of these metrics against the

other. The limited number of studies that were

conducted to prove the predictive power of EQ and

Watwin as well as the inconsistency of research

findings of previous researches calls for further

exploration of these metrics. While evidence that

Watwin outperformed EQ in predicting students’

performance in the contexts in which they were used,

the introduction of RED as a new metric in quantifying

students’ compilation behavior provided opportunities

to evaluate RED as a performance predictor and see if it

can outperform Watwin and EQ.

OBJECTIVES OF THE STUDY

The goal of this study is to determine how

accurately these metrics predict students’ performance

in an introductory programming course. This study aims

to answer the following research question:

1. Which among the data-driven metrics used to

quantify students’ programming behavior

accurately predict their performance?

MATERIALS AND METHODS

The data used in this study were gathered during

the First Semester of the School Year 2013-2014 from

students enrolled in CS21A - Introduction to

Computing 1, which is the first programming course of

Computer Science and Management Information

System students in one of the universities in Quezon

City. There were 80 students who have given their

consent to participate in the study and agreed to have

their programming process recorded. The participants

were informed about the study on the first day of their

class and were asked to sign a consent letter indicating

that they were willing to be part of it. They were not

obliged to join the study since participation is voluntary.

The laboratory exercises were performed by the

students using the machines in the computing

laboratories which have the same operating system,

Java standard development kit, and BlueJ. These

exercises were recorded using the data gathering tool

developed by [8] which was implemented as an

extension to the BlueJ development environment. The

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

11

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

laboratory exercises were given during the participants’

laboratory schedule and were designed to be finished

for one hour. The compilation events of each participant

were recorded and stored in a database where each

record represents one compilation event per student.

The data that were gathered were then pre-

processed for analysis. The fields that were extracted

for data analysis were the unique session identifier, the

error message, the line number where the error is

located, the source code, the time of compilation, the

filename, and the event type of every file compilation

made by the students. The records that were extracted

were stored in an Excel file which was later used in

generating summaries. Further, the records were

examined to determine which data to be included or

excluded in the analysis. Online protocol records that

were not related to the exercise were excluded. The

records with less than seven compilation events and the

amount of time spent which is less than 10 minutes in

solving the exercise which indicates that students gave

up on the laboratory exercise were also excluded. These

records were not included since they do not constitute a

representative sample of the students’ compilation

behavior.

These data were then analyzed using EQ, Watwin,

and RED to quantify student compilation behaviors

which are discussed in the preceding sections.

Scoring of Compilation Events of a Programming

Session

To illustrate how the scores of each compilation

event in a programming session are computed using the

data-driven metrics, we would refer to Table 1 which

can be assumed as a complete programming session.

The table consists of compile number, timestamp, event

type, error message, error location, and filename. All of

these elements are needed to compute the Watwin

Score. To compute the EQ score, we use the compile

number, event type, error message, and error location.

In contrast, the RED score calculation only needs the

compile number, event type, and error message.

Calculation of EQ Score

EQ is a metric used to quantify how well the

students cope with syntax errors. To compute for the

EQ score, we follow the algorithm presented in Figure 1

wherein a corresponding penalty is assigned if the

errors are of the same type, if the same error occurs on

the same line and whether the source code of the edit

location is unchanged. The value of EQ can be 0 or 1.

The closer the value of EQ to 1, the more struggles the

students have experienced.

Table 1. Sample Compilation Events of a Programming

Session

Comp.

No.

Time

stamp

Event

Type

Error

Message

Error

Location

Filename

1 1:24:53 Fail ; expected 23 Position.java

2 1:25:22 Fail ; expected 28 Position.java

3 1:25:30 Fail cannot find

symbol -

variable

YPos

28 Position.java

4 1:25:37 Fail cannot find

symbol -
variable

YPos

28 Position.java

5 1:25:45 Fail cannot find

symbol -

variable time

28 Position.java

6 1:25:58 Success -1 Position.java

7 1:26:04 Fail unclosed

comment

14 Interest.java

8 1:26:58 Fail cannot find

symbol -

class Math

9 Interest.java

9 1:27:05 Fail cannot find

symbol -

variable

XPos

60 Position.java

10 1:27:45 Fail cannot find

symbol -

variable

XPos

20 Position.java

11 1:27:55 Success -1 Interest.java

12 1:28:23 Success -1 Position.java

The first step in the computation of the EQ Score

is to construct a tuple of pairings using the compilation

events ordered by timestamp. Referring to data

presented in Table 1, the following are the compilation

pairings: {{1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,7},

{7,8}, {8,9}, {9,10}, {10,11} {11,12}}. For the purpose

of the illustration of the scoring, we assume the

following value for the Same Edit Location decision:

{1,2}- No, {2,3}- Yes, {3,4}- No, {4,5}- Yes, {5,6}-

Yes, {6,7}- No, {7,8}-Yes, {8,9}- No, {9,10}- Yes,

{10,11}- No, {11,12}.

Table 2 shows the total scores, the EQ of each

compilation pairings, and the EQ score of the

programming session. Event Type, Error Type, Error

Location, and Edit Location corresponds to the penalty

assigned based on the algorithm presented in Figure 1

of Section 2.1. Taking the first pair from Table 1, and

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

12

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

tracing using the flowchart in Figure 1, we verify first if

both events end in a syntax error. Since both ends are in

error and both have the same type of error, we assign a

penalty of 2 and 3, respectively. A penalty of 0 is

assigned to Error Location and Edit Location since the

errors occur in a different location and the edit location

is not the same. Therefore, the total penalty incurred by

the pair {1, 2} is 5. To get the EQ of the first pair, we

divide the total penalty by 9 which is the maximum

possible score for each pair. We repeat these steps for

all the other pairs and then get the average EQ. The

average of all the pairs is now the EQ score for this

programming session which is 0.39. The closer the

value of EQ to 1 means most of the compilations made

by the student resulted in errors.

Table 2. EQ Score of the Programming Session

Pairs Event

Type

Error

Type

Error

Location

Edit

Location

Total EQ

{1,2} 2 3 0 0 5 0.55

{2,3} 2 0 3 1 6 0.66

{3,4} 2 3 3 0 8 0.88

{4,5} 2 3 3 1 9 1

{5,6} 0 0 0 0 0 0

{6,7} 0 0 0 0 0 0

{7,8} 2 0 0 1 3 0.33

{8,9} 2 0 0 0 2 0.22

{9,10} 2 3 0 1 6 0.66

{10,11} 0 0 0 0 0 0

{11,12} 0 0 0 0 0 0

EQ Score 0.39

Calculation of the Watwin Score

Watwin Score takes into account the source files

students are working with and the time spent by the

students in resolving the errors in their program as

compared to the resolve times of their peers. Similar to

EQ, Watwin Score has a range of values from 0 to 1.

To compute for the Watwin score, we need to

construct first a tuple of pairings using the compilation

events associated with a file, ordered according to

timestamp. Assuming that there are no identical code

snapshots and no commented and deletion fixes were

done in the source code, the following are the tuple of

pairings created from Table 1 for the Position.java file

{{1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,9}, {9,10},

{10,12}} and {{7,8}, {8,11}} for the Interest.java file.

Since compilation pair {6,9} has event type pair

{SUCCESS, FAIL}, this pair would be excluded in the

computation. After pair construction, the generalization

of error messages through the removal of all identifier

information within each compilation event pairing was

also conducted. The error types presented in the study

of [6] were used as a reference in the generalization of

the error process. The next step is to calculate the time

spent by the student in correcting their errors by getting

the timestamp difference of the pairs. In cases where the

student switches from one file to another, we compute

the difference between the timestamp of the previous

file and the timestamp of the succeeding file. For

instance, the pairs {10, 12} and {8, 11} have different

files in between the compilation. To compute for the

time of pairs {10, 12} and {8, 11}, we compute the

difference between the timestamps of the pairs {11,12},

and {10,11}, respectively. Thus, the times spent by the

student expressed in seconds for each compilation

pairings are 29, 8, 7, 8, 7, 40, 28 for the Position.java

file and 54, 10 for Interest.java. After determining the

time spent per compilation pairing, calculate the mean

of the pairings, the standard deviation, the difference

between the mean and the standard deviation, and the

mean plus the standard deviation. The mean for this

programming session is 21.22, the standard deviation is

17.37, the time which is 1 standard deviation below the

mean is 3.85, and the time which is 1 standard deviation

higher than the mean is 38.59. Table 3 shows the scores

assigned to each pair by applying the scoring algorithm

as discussed in [16].

Table 3. Watwin Score of the Programming Session
Pairs Error

Message

Error

Type

Error

Location

Resolve

Time

Total Wat

win

{1,2} 4 4 0 15 23 0.65

{2,3} 0 0 2 15 17 0.48

{3,4} 4 4 2 15 25 0.71

{4,5} 0 4 2 15 21 0.60

{5,6} 0 0 0 15 15 0.42

{9,10} 4 4 0 25 33 0.94

{10,1

2}

0 0 0 15 15 0.42

{7,8} 0 0 0 25 25 0.71

{8,11} 0 0 0 15 15 0.42

Watwin Score 0.59

Table 3 shows the scores assigned for each

compilation pair in a programming session. Error

Message corresponds to the penalty for the same full

error message, Error Type for the penalty of same error

type, Error Location is for the same line penalty, and

Resolve Time is for the time to resolve error penalty.

The data from Table 1 shows that both compilation

events 1 and 2 resulted in the same error with the same

error type but occurred in a different line, thus a penalty

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

13

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

of 4 is assigned to both Error Message and Error Type

while Error Location has no penalty. The next step in

the algorithm is to get the Watwin score of the first pair

{1, 2} by comparing the time spent by the student in

correcting the error with the time which is 1 standard

deviation below the mean or the time which is 1

standard deviation above the mean. We recall that the

time spent is 29 seconds which is obviously not less

than 3.85 and not higher than 38.59 thus, a penalty of

15 is assigned to Resolve Time. The Watwin of the

compilation pair is normalized by dividing the total by

35 which is the maximum score for a compilation pair.

The Watwin score of 0.59 is calculated by getting the

mean of all the Watwin scores of the compilation pairs

for the programming session.

Calculation of the RED Score

Repeated Error Density is also a data-driven metric

and is used to quantify errors by looking at the number

of repeated error strings a student encounters, and the

length of these strings. Unlike EQ and Watwin, the

value of RED can be greater than or equal to 0.

The computation of the RED score is simpler

compared to the calculation of EQ and Watwin Score.

To compute for the RED score, we look into the

sequences of compilation events where there are strings

of repeated errors. Errors that do not constitute repeated

error strings would have a RED of 0, while repeated

error strings were calculated by using the equation ri
2/(ri

+ 1). Compute the total score for all the sequence of

compilation events to get the RED score as shown in

Table 4.

Table 4. RED Score of the Programming Session

Compilation

Events

Error Message Repeated

Error (ri)

RED

1, 2 ; expected 1 0.5

3, 4, 5 cannot find symbol -

variable

2 1.33

6 No error 0 0

7 unclosed comment 0 0

8 cannot find symbol –

class

0 0

9, 10 cannot find symbol -

variable

1 0.5

11,12 No error 0 0

RED Score 3.16

In the table, compilation events 1 and 2 has;

expected error for both compilation events. In this case,

there is 1 repeated error string for the two sequences

which is given a RED of 0.5. However, for compilation

events 3, 4, 5 with error message cannot find symbol -

variable, higher RED is given since there are 2 repeated

error strings. Hence, the longer the repeated error

strings, the higher penalty is assigned which indicates

that the student struggles more on that error.

Compilation events 6-8 and 11-12 were assigned a RED

of 0 since they do not constitute repeated error strings.

The RED score for this programming session is 3.16.

RESULTS AND DISCUSSION

The data that were gathered during the First

Semester of the School Year 2013-2014 from students

enrolled in CS21A - Introduction to Computing 1

allowed us to capture their compilation behaviors.

Because of the exclusion of some records, only the

compilation records of the 42 students (33 male and 9

female) out of the 80 students who participated in the

study were retained for analysis.

We applied the scoring algorithms presented in

Section 2 to the compilation records of the 42 students

to calculate the EQ, Watwin, and RED scores. The first

step for calculating the scores requires the construction

of compilation event pairings of the programming

session. After the pair construction, the EQ and RED

scores can then be calculated. However, additional data

preparation processes were done to the data for the

calculation of the Watwin scores. The comments in the

code snapshots were removed and each compilation

event pairs were compared. All pairs with identical

snapshots were removed so that the total number of

compilation pairings would not be inflated. In addition,

the pairings where the first event represents successful

compilation were also removed. The next step after pair

pruning would be to determine the diff ratio between

the pairs of code snapshots. If there were no insertion of

additional code to resolve the errors and only deletion

fixes were done, then the pairs were also removed.

Further, the generalization of error messages through

the removal of all identifier information within each

compilation event pairing was also conducted. The error

types presented in the study of [6] were used as a

reference in the generalization of the error process. The

final step in the preparation of data for calculation was

to estimate the amount of time a student spent working

on each compilation pairing. This was done by

computing the difference between timestamps of the

pairings on a per-file basis. The mean and standard

deviation of the programming session of each student

were also computed which would be later used to

determine the corresponding time penalty. When these

processes were done, the algorithm for quantifying the

Watwin score was then applied to the data.

To determine the predictive power of the three

metrics, linear regression models were built based on

EQ, Watwin, and RED scores and the students’

performance in class based on the students’ midterm

exam scores. Before conducting the linear regression

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

14

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

analysis, the variables need to satisfy some assumptions

to get a valid result. First, an inspection of the

scatterplot was conducted to check if there is a linear

relationship between the students’ EQ, Watwin, and

RED scores and students’ performance. The variables

were also subjected to Casewise diagnostic to check if

there were no significant outliers present. Then we

confirmed the residual independence using the Durbin-

Watson statistic. Residual independence was confirmed

by the Durbin-Watson statistic (1.79) for EQ, (1.92) for

Watwin, and (1.80) for RED. Furthermore, we checked

that the residuals of the regression line are

approximately distributed through inspection of a

histogram and P-P plot. All of the metrics’ variables

satisfied all the tests for assumptions, therefore linear

regression was performed.

The findings of the linear regression established

that EQ could significantly predict students’ midterm

exam score, F(1,40) = 11.409, p = .002, and accounted

for 20.2% of the explained variability in midterm exam

score. The regression equation was Midterm Exam

Score = 80.422 - 47.881 * EQ. Watwin on the other

hand, could also significantly predict students’ midterm

exam score, F(1,40) = 6.372, p = .016 and accounted for

11.6% of the explained variability in midterm exam

score with a regression equation: Midterm Exam Score

= 85.966 - 42.197*WatwinScore. We also found that a

linear regression established that the students’ RED

score could significantly predict students’ midterm

exam score, F(1,40) = 6.701, p = .013, and accounted

for 12.2% of the explained variability in midterm exam

score. The regression equation was: Midterm Exam

Score = 74.248 - 1.172 * RED.

The result of this study provided information on

the ability of the metrics to predict students’ midterm

exam score. Previous studies that were conducted which

compare the predictive power of EQ and Watwin

reported that Watwin is a stronger predictor than EQ.

However, the result of this study revealed that EQ

performed better among the three data-driven metrics

based on the dataset used and the population considered

in this paper. Furthermore, the new metric RED has

also outperformed Watwin in predicting the students’

midterm exam score.

CONCLUSION AND RECOMMENDATION

EQ and Watwin have been evaluated by other

researchers for their predictive powers. However, there

are only a few studies conducted to compare these

metrics and there are some inconsistencies in the results

of previous researches. In this paper, we compared the

predictive power of the three metrics. The result of this

study is inconsistent with the results of the previous

studies wherein they have reported that Watwin is a

better predictor than EQ when correlated with student

performance. The result showed that EQ is a better

predictor among the three metrics. This result suggests

further comparison and exploration of the three metrics

in different contexts to come up with consistent findings

regarding their ability to predict students’ programming

performance. And since this is the first time that RED

was correlated with students’ performance, further

validation of the predictive power of RED should be

conducted to provide additional evidence that this

metric could be considered to be predictive of students’

programming performance.

For future works, further comparison of the three

metrics using different datasets would be conducted to

validate the result of this study.

REFERENCES

[1] Kofi Adu-Manusarpong, John Kingsley Arthur,

and Prince Yaw Owusu Amoako. 2013. Causes

of Failure of Students in Computer

Programming Courses: The Teacher Learner

Perspective. International Journal of Computer

Applications IJCA 77, 12 (2013), 27–32.

DOI:http://dx.doi.org/10.5120/13448-1311

[2] Alireza Ahadi, Raymond Lister, and Arto

Vihavainen. 2016. On the Number of Attempts

Students Made on Some Online Programming

Exercises During Semester and their

Subsequent Performance on Final Exam

Questions. ITiCSE ’16, July 09-13, 2016,

Arequipa, Peru. DOI:

http://dx.doi.org/10.1145/2899415.2899452

[3] Brett A. Becker. 2016. A New Metric to

Quantify Repeated Compiler Errors for Novice

Programmers. In Proceedings of the 2016 ACM

Conference on Innovation and Technology in

Computer Science Education (ITiCSE '16).

ACM, New York, NY, USA, 296-301. DOI:

http://dx.doi.org/10.1145/2899415.2899463

[4] Adam Carter, Christopher Hundhausen, and

Olusola Adesope. 2015. The Normalized

Programming State Model: Predicting Student

Performance in Computing Courses Based on

Programming Behavior. ICER '15, August 9--

13, 2015, Omaha, Nebraska, USA. DOI:

http://dx.doi.org/10.1145/2787622.2787710

[5] Cruz Izu, Amali Weerasinghe, and Cheryl

Pope. 2016. A Study of Code Design Skills in

Novice Programmers using the SOLO

taxonomy. In Proceedings of the 2016 ACM

Conference on International Computing

Education Research (ICER '16). ACM, New

PSU–Journal of Engineering, Technology, and Computing Sciences (JETCS)
(Vol. No. 2, Issue 2 pp. 8-15, December 2020)

15

ISSN 2599-462X (Print) www.psurj.org/jetc ISSN 2599-4638 (Online)

York, NY, USA, 251-259. DOI:

http://dx.doi.org/10.1145/2960310.2960324

[6] Matthew Jadud. 2005. A First Look at Novice

Compilation Behaviour Using BlueJ. Computer

Science Education, 15, 1, 25-40, DOI:

10.1080/08993400500056530

[7] Matthew Jadud. 2006. An Exploration of

Novice Compilation Behavior in BlueJ. PhD

Dissertation, 2006.

[8] Matthew Jadud. 2006. Methods and tools for

exploring novice compilation behaviour. In

Proceedings of the Second International

Workshop on Computing Education Research,

ICER ’06, pages 73–84, 2006.

[9] Theodora Koulouri, Stanislao Lauria, and

Robert Macredie. 2014. Teaching Introductory

Programming: A Quantitative Evaluation of

Different Approaches. Trans. Comput. Educ.

14, 4, Article 26 (December 2014), 28 pages.

DOI=http://dx.doi.org/10.1145/2662412

[10] Craig Miller, Amber Settle, and John Lalor.

2015. Learning Object-Oriented Programming

in Python: Towards an Inventory of Difficulties

and Testing Pitfalls. In Proceedings of the 16th

Annual Conference on Information Technology

Education (SIGITE '15). ACM, New York, NY,

USA, 59-64. DOI:

http://rizal.lib.admu.edu.ph:2134/10.1145/2808

006.2808017

[11] Andrew Petersen, Jaime Spacco, and Arto

Vihavainen. 2015. An exploration of error

quotient in multiple contexts. In Proceedings of

the 15th Koli Calling Conference on

Computing Education Research (Koli Calling

'15). ACM, New York, NY, USA, 77-86. DOI:

http://dx.doi.org/10.1145/2828959.2828966

[12] Ma. Mercedes T. Rodrigo, Emily Tabanao, Ma.

Beatriz Lahoz, and Matthew Jadud. 2009.

Analyzing Online Protocols to Characterize

Novice Java Programmers. Philippine Journal

of Science. 138 (2): 177-190, December 2009

ISSN 0031 – 7683

[13] Emily Tabanao, Ma. Mercedes T. Rodrigo, and

Matthew Jadud. 2011. Predicting at-risk novice

Java programmers through the analysis of

online protocols. In Proceedings of the seventh

international workshop on Computing

education research - ICER '11 (2011). DOI:

http://dx.doi.org/10.1145/2016911.2016930

[14] Christopher Watson and Frederick Li. 2014.

Failure rates in introductory programming

revisited. In Proceedings of the 2014

conference on Innovation technology in

computer science education (ITiCSE '14). New

York: Association for Computing Machinery

(ACM), pp. 39-44.

[15] Christopher Watson, Frederick Li, and Jaime

Godwin. 2014. No Tests Required: Comparing

Traditional and Dynamic Predictors of

Programming Success. SIGCSE '14, March 5–

8, 2014, Atlanta, GA, USA.

http://dx.doi.org/10.1145/2538862.2538930

[16] Christopher Watson, Frederick Li, and Jaime

Godwin. 2014. Predicting Performance in an

Introductory Programming Course by Logging

and Analyzing Student Programming Behavior.

2013 IEEE 13th International Conference on

Advanced Learning Technologies. DOI

10.1109/ICALT.2013.99

