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Abstract – How students cope with syntax errors is a possible indicator of students’ programming skills or levels of 

understanding.  Researchers have therefore taken an interest in studying student online protocols, hence the 

development of online protocol analysis metrics such as Error Quotient (EQ), Watwin Algorithm, and Repeated Error 

Density (RED). These metrics aim to quantify how well students cope with syntax errors which could be used to predict 

students’ performance. Previous studies were conducted comparing the predictive power of these metrics, however, the 

limited number and inconsistencies of the results require further exploration to come up with consistent and reliable 

results. We compare three data-driven metrics to determine which among them predicts students’ midterm exam scores. 

The findings showed that RED could significantly predict students’ midterm scores and accounted for 12.2% of the 

explained variability in midterm exam scores. The result of the comparison of the three metrics showed that EQ is the 

better predictor among them since it accounted for 20.2% of the explained variability in midterm exam scores.  

Keywords – Compilation behaviors, data-driven metrics, Error Quotient, Watwin, Repeated Error Density.  

INTRODUCTION 

Programming is a difficult skill for students to 

learn. A literature review conducted by Watson and Li 

[14] reports that about 32% of the students worldwide 

fail their CS1 or introductory programming course. 

Computer science educators and researchers over the 

past years attempted to determine and understand where 

student difficulties lie. They found that students have 

difficulty understanding programming concepts [1, 9], 

tracing, reading, and understanding pieces of code [5, 

10].  

How students cope with syntax errors is a possible 

indicator of students’ skills or levels of understanding.  

Researchers have therefore taken an interest in studying 

student online protocols, defined as the set of all 

program submissions to the compiler.  The online 

protocols are typically gathered through an 

instrumented interactive development environment. 

Each time a student compiles a program, the program 

source code as well as the event type (success or fail), 

timestamp, error message reported, line number, and 

other information is saved to a database that can later be 

analyzed [13, 11].  

Three examples of online protocol analysis metrics 

are the Error Quotient (EQ)[7], Watwin Algorithm [16], 

and Repeated Error Density [3].  

Jadud explores students’ compilation behavior by 

dynamically capturing “snapshots” of their programs 

using the BlueJ IDE which were taken every time they 

compile their Java program. Analyzing these snapshots 

provided information about how students write their 

programs. EQ is a metric that quantifies how students 

fix their syntax errors [2].  

A compilation event is represented as one record 

which consists of the event type, error message, the 

location of the error in the file, and the source code 

[13]. Some studies include more compilation event 

parameters which are needed in their analysis. To 

calculate the EQ [7], we create compilation pairings by 

taking consecutive pairs from the set of compilation 

events of each student. We then score each pair of 

compilation events according to the algorithm presented 

in Figure 1. The scores are normalized by dividing the 

sum of the total scores assigned to each pair of 

compilation events by 9 which is the maximum score 

possible for each pair. Finally, compute the sum of the 

scores and then divide it by the number of pairs. The 

average which ranges from 0 to 1 is taken as the EQ 

score for the programming session.  

Since the introduction of EQ as a measure of 

compilation behavior of novice programmers in 2006, 

researchers have become more interested in the 

collection of log data on students’ programming 

processes while they are working on their laboratory 
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exercises or course assignments.  To test the predictive 

power of EQ, Jadud [8] conducted a study correlating 

students’ EQ and their performance on traditional 

assignments and final exams using code snapshots of 

the students’ program. The findings of the study 

revealed that the quality of the relationship between EQ 

and performance in assignments is poor because only 

11% of the variance in the performance can be 

explained by EQ, though the fit is significant. The 

relationship between EQ and the final exam is more 

significant but still considered to be poor since EQ can 

only account for 25% of the variance of students’ final 

exam scores.  

 

Figure 1. EQ Algorithm Flowchart 

A similar study was conducted by Rodrigo, et al. 

[12] which correlated the mean EQ score with the 

students’ midterm score. This was considered as one of 

the first successful use of EQ as a predictor of student 

performance since they arrived at a moderate but 

significant correlation value R= -0.54 (p<0.001). 

Further exploration was conducted in the study of 

Tabanao, et al. [13] to find out which among the errors 

encountered, the average time between compilation and 

EQ are predictive of students’ midterm scores. It was 

found that compared to the linear regression models 

using errors encountered and time between 

compilations, the model with EQ as a factor is 

considered to be a highly significant predictor of the 

midterm score. The model could account for a moderate 

amount of the variance in performance which is 29.7% 

compared to 13.87% for the errors encountered and 

6.51% for the average time between compilations. 

These studies provided evidence of the predictive power 

of EQ using students’ programming behavior. 

The findings on the studies regarding EQ proved 

that it is a weak predictor of students’ performance. 

Watson, et al. [16], saw methodological weaknesses in 

the approach used by the EQ algorithm. It was noted 

that EQ assumes that students work on a single source 

file while in reality, students can work on multiple files 

at the same time. In between compilations of different 

files would result in inaccurate compilation pairings 

since the construction of pairings in EQ used the natural 

order of the compilation events during a programming 

session. Further, EQ did not consider the amount of 

time spent by a student in resolving their errors. The 

attempt to address the limitations of EQ led to the 

development of the Watwin algorithm. The limitation 

on the construction of compilation pairings was 

addressed by constructing the pairings on a per-file 

basis, ordered by timestamps. In addition, the algorithm 

incorporates a scoring approach that considers the 

amount of time spent by students to resolve a specific 

type of error compared to the resolve time of their 

peers. 

Similar to EQ, Watwin also requires the 

construction of consecutive pairings for each file a 

student is working on and estimates the amount of time 

a student has spent in resolving an error. A more 

detailed approach in preparing the set of compilation 

pairings can be found in [16]. The scoring algorithm 

assigned penalty based on their resolve times which can 

be one standard deviation above the mean or below the 

mean. A higher penalty is assigned to longer resolve 

time which indicates that students have fixed an error 

much slower than their peers, while a lower penalty is 

assigned to those who resolve their errors quickly. The 

components included and the assigned penalties were 

based on the result of previous studies that used 

regression models and cross-validation and were not a 

product of random guesswork. This makes the 

algorithm applicable to independent datasets. 

To evaluate the predictive power of the developed 

algorithm, the Watwin score was correlated to the 

overall coursework mark. The findings revealed that the 

Watwin score could significantly predict performance, 

which could explain 30% of the variance in overall 

coursework marks. The same dataset used in the 

analysis of the predictive power of Watwin was applied 

to EQ to compare their predictive power. The result was 

consistent with other studies that EQ is a weak predictor 

of performance having explanatory power between 

15%-20% of the variance in performance. Further 

comparison of EQ and Watwin was conducted in [15] 

which is consistent with the findings of [16] wherein 

both are predictive of students’ performance and that 

Watwin is a stronger predictor than EQ. However, 

recent exploration of the metrics in the study of Carter, 

et al. [4] presented a surprising result that was 

drastically different from the results of previous studies 

comparing EQ and Watwin. The result found out that 

EQ can only explain 3% of the variance in students’ 
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final grade compared to 18% on the study of [15] while 

Watwin could only account for 12% compared to 36%. 

The results of these studies provided evidence that 

Watwin is a stronger predictor compared to EQ. 

A third algorithm for online protocol analysis 

quantifies repeated errors by looking at the number of 

error strings a student encounters as well as the length 

of these strings. This metric is less context-dependent 

and is suitable for short programming sessions. RED 

has properties that could answer the following questions 

of Jadud [7]: (1) “If one student fails to correct an 

‘illegal start of expression error throughout three 

compilations, and another over 10, is one student 

[about] three times worse than the other?”, and (2) 

“What if the other student deals with a non-stop string 

of errors, and the repetition of this particular error is just 

one of many?”.  RED could answer the first question by 

providing a means to quantify how much a student 

struggles with a particular error by looking at the length 

of repeated error strings of that particular error 

compared to their peers. The second question could also 

be answered by the metric since it assigns a higher 

penalty to one longer repeated error strings compared to 

two shorter repeated error strings. 

The algorithm to compute the RED score is 

simple. The metric involves summing up a sub-metric 

calculated on each repeated error string encountered in 

a compilation event sequence. This sub metric is ri
2/|si| 

where |si| is the length of string si containing ri repeated 

errors. This can be expressed completely in terms of ri 

as ri
2/(ri + 1), since the length of a string si, containing 

consecutive errors is always equal to ri + 1. The value of 

RED for a given sequence S of n repeated error strings 

is the sum of ri
2/(ri + 1) for each string si in S, given by 

the equation: 

  
where ri is the number of repeated errors in string 

si.  

We have to take note that a repeated error r is 

defined as a pair of events where each event results in 

the same error, which means committing the same error 

consecutively.   

RED has been compared to EQ to check how the 

metric behaves on real data which was collected from 

the compiler data recorded for four weeks while 

students used a customized Java editor. The data 

consists of 29,019 error events from two groups of 

novice programmers with approximately 100 students 

each. The results showed that RED is more suitable for 

shorter sessions, while EQ is more suitable for longer 

sessions. It was also pointed out, that RED could be a 

valid metric when compiler error messages are 

enhanced. However, no studies have been conducted yet 

to determine if RED correlates with student 

performance which provides an opportunity for further 

research. 

These metrics share a single purpose: to quantify 

how well students cope with syntax errors.  Their 

precise methods differ (to be discussed in the methods 

section).  There are limited studies, though, comparing 

the performance of each of these metrics against the 

other. The limited number of studies that were 

conducted to prove the predictive power of EQ and 

Watwin as well as the inconsistency of research 

findings of previous researches calls for further 

exploration of these metrics. While evidence that 

Watwin outperformed EQ in predicting students’ 

performance in the contexts in which they were used, 

the introduction of RED as a new metric in quantifying 

students’ compilation behavior provided opportunities 

to evaluate RED as a performance predictor and see if it 

can outperform Watwin and EQ. 

 

OBJECTIVES OF THE STUDY 

The goal of this study is to determine how 

accurately these metrics predict students’ performance 

in an introductory programming course. This study aims 

to answer the following research question: 

1. Which among the data-driven metrics used to 

quantify students’ programming behavior 

accurately predict their performance? 

  

MATERIALS AND METHODS 

The data used in this study were gathered during 

the First Semester of the School Year 2013-2014 from 

students enrolled in CS21A - Introduction to 

Computing 1, which is the first programming course of 

Computer Science and Management Information 

System students in one of the universities in Quezon 

City. There were 80 students who have given their 

consent to participate in the study and agreed to have 

their programming process recorded. The participants 

were informed about the study on the first day of their 

class and were asked to sign a consent letter indicating 

that they were willing to be part of it. They were not 

obliged to join the study since participation is voluntary. 

The laboratory exercises were performed by the 

students using the machines in the computing 

laboratories which have the same operating system, 

Java standard development kit, and BlueJ. These 

exercises were recorded using the data gathering tool 

developed by [8] which was implemented as an 

extension to the BlueJ development environment. The 
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laboratory exercises were given during the participants’ 

laboratory schedule and were designed to be finished 

for one hour. The compilation events of each participant 

were recorded and stored in a database where each 

record represents one compilation event per student. 

The data that were gathered were then pre-

processed for analysis. The fields that were extracted 

for data analysis were the unique session identifier, the 

error message, the line number where the error is 

located, the source code, the time of compilation, the 

filename, and the event type of every file compilation 

made by the students. The records that were extracted 

were stored in an Excel file which was later used in 

generating summaries. Further, the records were 

examined to determine which data to be included or 

excluded in the analysis. Online protocol records that 

were not related to the exercise were excluded. The 

records with less than seven compilation events and the 

amount of time spent which is less than 10 minutes in 

solving the exercise which indicates that students gave 

up on the laboratory exercise were also excluded. These 

records were not included since they do not constitute a 

representative sample of the students’ compilation 

behavior.  

These data were then analyzed using EQ, Watwin, 

and RED to quantify student compilation behaviors 

which are discussed in the preceding sections. 

 

Scoring of Compilation Events of a Programming 

Session  

To illustrate how the scores of each compilation 

event in a programming session are computed using the 

data-driven metrics, we would refer to Table 1 which 

can be assumed as a complete programming session. 

The table consists of compile number, timestamp, event 

type, error message, error location, and filename. All of 

these elements are needed to compute the Watwin 

Score. To compute the EQ score, we use the compile 

number, event type, error message, and error location. 

In contrast, the RED score calculation only needs the 

compile number, event type, and error message. 

 

Calculation of EQ Score 

EQ is a metric used to quantify how well the 

students cope with syntax errors. To compute for the 

EQ score, we follow the algorithm presented in Figure 1 

wherein a corresponding penalty is assigned if the 

errors are of the same type, if the same error occurs on 

the same line and whether the source code of the edit 

location is unchanged.  The value of EQ can be 0 or 1. 

The closer the value of EQ to 1, the more struggles the 

students have experienced. 

 

Table 1. Sample Compilation Events of a Programming 

Session 

Comp.

No. 

Time 

stamp 

Event 

Type 

Error 

Message 

Error 

Location 

Filename 

1 1:24:53  Fail ; expected 23 Position.java 

2 1:25:22  Fail ; expected 28 Position.java 

3 1:25:30  Fail cannot find 

symbol - 

variable 

YPos 

28 Position.java 

4 1:25:37 Fail cannot find 

symbol - 
variable 

YPos 

28 Position.java 

5 1:25:45 Fail cannot find 

symbol - 

variable time 

28 Position.java 

6 1:25:58  Success  -1 Position.java 

7 1:26:04  Fail unclosed 

comment 

14 Interest.java 

8 1:26:58  Fail cannot find 

symbol - 

class Math 

9 Interest.java 

9 1:27:05  Fail cannot find 

symbol - 

variable 

XPos 

60 Position.java 

10 1:27:45  Fail cannot find 

symbol - 

variable 

XPos 

20 Position.java 

11 1:27:55  Success  -1 Interest.java 

12 1:28:23  Success  -1 Position.java 

The first step in the computation of the EQ Score 

is to construct a tuple of pairings using the compilation 

events ordered by timestamp. Referring to data 

presented in Table 1, the following are the compilation 

pairings: {{1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,7}, 

{7,8}, {8,9}, {9,10}, {10,11} {11,12}}. For the purpose 

of the illustration of the scoring, we assume the 

following value for the Same Edit Location decision: 

{1,2}- No, {2,3}- Yes, {3,4}- No, {4,5}- Yes, {5,6}- 

Yes, {6,7}- No, {7,8}-Yes, {8,9}- No, {9,10}- Yes, 

{10,11}- No, {11,12}. 

Table 2 shows the total scores, the EQ of each 

compilation pairings, and the EQ score of the 

programming session. Event Type, Error Type, Error 

Location, and Edit Location corresponds to the penalty 

assigned based on the algorithm presented in Figure 1 

of Section 2.1. Taking the first pair from Table 1, and  
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tracing using the flowchart in Figure 1, we verify first if 

both events end in a syntax error. Since both ends are in 

error and both have the same type of error, we assign a 

penalty of 2 and 3, respectively. A penalty of 0 is 

assigned to Error Location and Edit Location since the 

errors occur in a different location and the edit location 

is not the same. Therefore, the total penalty incurred by 

the pair {1, 2} is 5. To get the EQ of the first pair, we 

divide the total penalty by 9 which is the maximum 

possible score for each pair. We repeat these steps for 

all the other pairs and then get the average EQ. The 

average of all the pairs is now the EQ score for this 

programming session which is 0.39. The closer the 

value of EQ to 1 means most of the compilations made 

by the student resulted in errors.  

Table 2. EQ Score of the Programming Session 

Pairs Event 

Type 

Error 

Type 

Error 

Location 

Edit 

Location 

Total EQ 

{1,2} 2 3 0 0 5 0.55 

{2,3} 2 0 3 1 6 0.66 

{3,4} 2 3 3 0 8 0.88 

{4,5} 2 3 3 1 9 1 

{5,6} 0 0 0 0 0 0 

{6,7} 0 0 0 0 0 0 

{7,8} 2 0 0 1 3 0.33 

{8,9} 2 0 0 0 2 0.22 

{9,10} 2 3 0 1 6 0.66 

{10,11} 0 0 0 0 0 0 

{11,12} 0 0 0 0 0 0 

EQ Score 0.39 

 

Calculation of the Watwin Score 

Watwin Score takes into account the source files 

students are working with and the time spent by the 

students in resolving the errors in their program as 

compared to the resolve times of their peers. Similar to 

EQ, Watwin Score has a range of values from 0 to 1.  

To compute for the Watwin score, we need to 

construct first a tuple of pairings using the compilation 

events associated with a file, ordered according to 

timestamp. Assuming that there are no identical code 

snapshots and no commented and deletion fixes were 

done in the source code, the following are the tuple of 

pairings created from Table 1 for the Position.java file 

{{1,2}, {2,3}, {3,4}, {4,5}, {5,6}, {6,9}, {9,10}, 

{10,12}} and {{7,8}, {8,11}} for the Interest.java file. 

Since compilation pair {6,9} has event type pair 

{SUCCESS, FAIL}, this pair would be excluded in the 

computation. After pair construction, the generalization 

of error messages through the removal of all identifier 

information within each compilation event pairing was 

also conducted. The error types presented in the study 

of [6] were used as a reference in the generalization of 

the error process. The next step is to calculate the time 

spent by the student in correcting their errors by getting 

the timestamp difference of the pairs. In cases where the 

student switches from one file to another, we compute 

the difference between the timestamp of the previous 

file and the timestamp of the succeeding file.  For 

instance, the pairs {10, 12} and {8, 11} have different 

files in between the compilation. To compute for the 

time of pairs {10, 12} and {8, 11}, we compute the 

difference between the timestamps of the pairs {11,12}, 

and {10,11}, respectively. Thus, the times spent by the 

student expressed in seconds for each compilation 

pairings are 29, 8, 7, 8, 7, 40, 28 for the Position.java 

file and 54, 10 for Interest.java. After determining the 

time spent per compilation pairing, calculate the mean 

of the pairings, the standard deviation, the difference 

between the mean and the standard deviation, and the 

mean plus the standard deviation. The mean for this 

programming session is 21.22, the standard deviation is 

17.37, the time which is 1 standard deviation below the 

mean is 3.85, and the time which is 1 standard deviation 

higher than the mean is 38.59. Table 3 shows the scores 

assigned to each pair by applying the scoring algorithm 

as discussed in [16]. 

Table 3. Watwin Score of the Programming Session 
Pairs Error 

Message 

Error 

Type 

Error 

Location 

Resolve 

Time 

Total Wat

win 

{1,2} 4 4 0 15 23 0.65 

{2,3} 0 0 2 15 17 0.48 

{3,4} 4 4 2 15 25 0.71 

{4,5} 0 4 2 15 21 0.60 

{5,6} 0 0 0 15 15 0.42 

{9,10} 4 4 0 25 33 0.94 

{10,1

2} 

0 0 0 15 15 0.42 

{7,8} 0 0 0 25 25 0.71 

{8,11} 0 0 0 15 15 0.42 

Watwin Score 0.59 

Table 3 shows the scores assigned for each 

compilation pair in a programming session. Error 

Message corresponds to the penalty for the same full 

error message, Error Type for the penalty of same error 

type, Error Location is for the same line penalty, and 

Resolve Time is for the time to resolve error penalty.  

The data from Table 1 shows that both compilation 

events 1 and 2 resulted in the same error with the same 

error type but occurred in a different line, thus a penalty 
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of 4 is assigned to both Error Message and Error Type 

while Error Location has no penalty. The next step in 

the algorithm is to get the Watwin score of the first pair 

{1, 2} by comparing the time spent by the student in 

correcting the error with the time which is 1 standard 

deviation below the mean or the time which is 1 

standard deviation above the mean.  We recall that the 

time spent is 29 seconds which is obviously not less 

than 3.85 and not higher than 38.59 thus, a penalty of 

15 is assigned to Resolve Time.  The Watwin of the 

compilation pair is normalized by dividing the total by 

35 which is the maximum score for a compilation pair. 

The Watwin score of 0.59 is calculated by getting the 

mean of all the Watwin scores of the compilation pairs 

for the programming session. 

 

Calculation of the RED Score 

Repeated Error Density is also a data-driven metric 

and is used to quantify errors by looking at the number 

of repeated error strings a student encounters, and the 

length of these strings. Unlike EQ and Watwin, the 

value of RED can be greater than or equal to 0.  

The computation of the RED score is simpler 

compared to the calculation of EQ and Watwin Score. 

To compute for the RED score, we look into the 

sequences of compilation events where there are strings 

of repeated errors. Errors that do not constitute repeated 

error strings would have a RED of 0, while repeated 

error strings were calculated by using the equation ri
2/(ri 

+ 1).  Compute the total score for all the sequence of 

compilation events to get the RED score as shown in 

Table 4. 

Table 4. RED Score of the Programming Session 

Compilation 

Events 

Error Message Repeated 

Error (ri) 

RED 

1, 2 ; expected 1 0.5 

3, 4, 5 cannot find symbol - 

variable  

2 1.33 

6 No error 0 0 

7 unclosed comment 0 0 

8 cannot find symbol – 

class 

0 0 

9, 10 cannot find symbol - 

variable  

1 0.5 

11,12 No error 0 0 

RED Score 3.16 

In the table, compilation events 1 and 2 has; 

expected error for both compilation events. In this case, 

there is 1 repeated error string for the two sequences 

which is given a RED of 0.5. However, for compilation 

events 3, 4, 5 with error message cannot find symbol - 

variable, higher RED is given since there are 2 repeated 

error strings. Hence, the longer the repeated error 

strings, the higher penalty is assigned which indicates 

that the student struggles more on that error. 

Compilation events 6-8 and 11-12 were assigned a RED 

of 0 since they do not constitute repeated error strings. 

The RED score for this programming session is 3.16. 

 

RESULTS AND DISCUSSION 

The data that were gathered during the First 

Semester of the School Year 2013-2014 from students 

enrolled in CS21A - Introduction to Computing 1 

allowed us to capture their compilation behaviors.  

Because of the exclusion of some records, only the 

compilation records of the 42 students (33 male and 9 

female) out of the 80 students who participated in the 

study were retained for analysis. 

We applied the scoring algorithms presented in 

Section 2 to the compilation records of the 42 students 

to calculate the EQ, Watwin, and RED scores. The first 

step for calculating the scores requires the construction 

of compilation event pairings of the programming 

session. After the pair construction, the EQ and RED 

scores can then be calculated. However, additional data 

preparation processes were done to the data for the 

calculation of the Watwin scores. The comments in the 

code snapshots were removed and each compilation 

event pairs were compared. All pairs with identical 

snapshots were removed so that the total number of 

compilation pairings would not be inflated. In addition, 

the pairings where the first event represents successful 

compilation were also removed. The next step after pair 

pruning would be to determine the diff ratio between 

the pairs of code snapshots. If there were no insertion of 

additional code to resolve the errors and only deletion 

fixes were done, then the pairs were also removed. 

Further, the generalization of error messages through 

the removal of all identifier information within each 

compilation event pairing was also conducted. The error 

types presented in the study of [6] were used as a 

reference in the generalization of the error process. The 

final step in the preparation of data for calculation was 

to estimate the amount of time a student spent working 

on each compilation pairing. This was done by 

computing the difference between timestamps of the 

pairings on a per-file basis. The mean and standard 

deviation of the programming session of each student 

were also computed which would be later used to 

determine the corresponding time penalty. When these 

processes were done, the algorithm for quantifying the 

Watwin score was then applied to the data. 

To determine the predictive power of the three 

metrics, linear regression models were built based on 

EQ, Watwin, and RED scores and the students’ 

performance in class based on the students’ midterm 

exam scores. Before conducting the linear regression 
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analysis, the variables need to satisfy some assumptions 

to get a valid result. First, an inspection of the 

scatterplot was conducted to check if there is a linear 

relationship between the students’ EQ, Watwin, and 

RED scores and students’ performance. The variables 

were also subjected to Casewise diagnostic to check if 

there were no significant outliers present. Then we 

confirmed the residual independence using the Durbin-

Watson statistic. Residual independence was confirmed 

by the Durbin-Watson statistic (1.79) for EQ, (1.92) for 

Watwin, and (1.80) for RED. Furthermore, we checked 

that the residuals of the regression line are 

approximately distributed through inspection of a 

histogram and P-P plot. All of the metrics’ variables 

satisfied all the tests for assumptions, therefore linear 

regression was performed. 

The findings of the linear regression established 

that EQ could significantly predict students’ midterm 

exam score, F(1,40) = 11.409, p = .002, and accounted 

for 20.2% of the explained variability in midterm exam 

score. The regression equation was Midterm Exam 

Score = 80.422 - 47.881 * EQ. Watwin on the other 

hand, could also significantly predict students’ midterm 

exam score, F(1,40) = 6.372, p = .016 and accounted for 

11.6% of the explained variability in midterm exam 

score with a regression equation: Midterm Exam Score 

= 85.966 - 42.197*WatwinScore. We also found that a 

linear regression established that the students’ RED 

score could significantly predict students’ midterm 

exam score, F(1,40) = 6.701, p = .013, and accounted 

for 12.2% of the explained variability in midterm exam 

score. The regression equation was: Midterm Exam 

Score = 74.248 - 1.172 * RED.  

The result of this study provided information on 

the ability of the metrics to predict students’ midterm 

exam score. Previous studies that were conducted which 

compare the predictive power of EQ and Watwin 

reported that Watwin is a stronger predictor than EQ. 

However, the result of this study revealed that EQ 

performed better among the three data-driven metrics 

based on the dataset used and the population considered 

in this paper.  Furthermore, the new metric RED has 

also outperformed Watwin in predicting the students’ 

midterm exam score.       

 
CONCLUSION AND RECOMMENDATION 

EQ and Watwin have been evaluated by other 

researchers for their predictive powers. However, there 

are only a few studies conducted to compare these 

metrics and there are some inconsistencies in the results 

of previous researches. In this paper, we compared the 

predictive power of the three metrics. The result of this 

study is inconsistent with the results of the previous 

studies wherein they have reported that Watwin is a 

better predictor than EQ when correlated with student 

performance. The result showed that EQ is a better 

predictor among the three metrics. This result suggests 

further comparison and exploration of the three metrics 

in different contexts to come up with consistent findings 

regarding their ability to predict students’ programming 

performance. And since this is the first time that RED 

was correlated with students’ performance, further 

validation of the predictive power of RED should be 

conducted to provide additional evidence that this 

metric could be considered to be predictive of students’ 

programming performance.  

For future works, further comparison of the three 

metrics using different datasets would be conducted to 

validate the result of this study. 
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